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FINITE ELEMENT ANALYSIS OF INTERFACIAL
FRICTION AND SLIP IN COMPOSITES WITH FULLY
UNBONDED FILLER

E. Ghassemieh
School of Mechanical and Manufacturing Engineering,
Loughborough University, Loughborough, United Kingdom

A finite element model is developed to predict the stress-strain behaviour of
particulate composites with fully unbonded filler particles. This condition can
occur because of the lack of adhesion property of the filler surface. Whilst
part of the filler particle is separated from the matrix, another section of filler
keeps in contact with the matrix because of the lateral compressive displace-
ment of the matrix. The slip boundary condition is imposed on the section of
the interface that remains closed. The states of stress and displacement fields
are obtained. The location of any further deformation through crazing or shear
band formation is identified. A completely unbonded inclusion with partial
slip at a section of the interface reduces the concentration of the stress at
the interface significantly. Whereas this might lead to slightly higher
strength, it decreases the load transfer efficiency and stiffness of this type of
composite.

Keywords: Particulates composites; Finite element analysis; Stress-strain behaviour;
Stiffness; Strength; Particulate filler; Matrix-filler interface; Failure

INTRODUCTION

Adhesion between the two phases is often a critical factor in
determining the ultimate strength of a composite material. The level
of bonding of inclusions to the matrix is also one of the dictating
aspects in load transfer.

The level of bonding of the matrix and filler phases depends on the
surface condition of the filler. The viscosity of the resin at the time of
application and the amount of the wetting of the filler are other factors
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in quality of the bonding of the components of the composite. Stiffer
filler than resin and similar thermal expansion coefficient for the
components can assist the filler-matrix bonding.

If any of these required conditions for perfect bonding are not ful-
filled the adhesion between the matrix and filler would not be
achieved. Treating the particles with a coating can affect and control
the adhesion between the matrix and filler. For example, hexa-
methyldisilazane and commercial silane coupling agents reduce the
adhesion between filler and matrix [1].

In this paper the stress field in a composite with fully unbonded
rigid particles is analysed and the effect of poor adhesion on the ulti-
mate strength and stiffness of the composite is studied.

Most of the theories which explain the reinforcing action of a filler
assume perfect adhesion between the filler and the polymer matrix.
The case of imperfect adhesion was, however, discussed theoretically
by Sato and Furukawa [2]. They assumed that the nonbonded parti-
cles act as holes and, therefore, predicted a decrease in modulus with
increasing filler content. One can argue that the nonbonded particles
do not act entirely as holes since they also restrain the matrix from
collapsing. A change of the matrix-filler adhesion has a smaller effect
on modulus than on strength. The latter is much more dependent on
surface pretreatment. In fact, the degree of adhesion does not appear
to be an important factor as long as the frictional forces between the
phases are not exceeded by the applied stress. In most filled systems
there is a mismatch in the coefficients of thermal expansion which is
reflected as a mechanical bond resulting from thermally induced
stresses. Brassell [3] found that the degree of bonding between the
phases does not appear to have any influence on mechanical properties
at liquid nitrogen temperature and this was attributed to the com-
pressive stresses on the filler particle. In most cases, even if the ad-
hesion between phases is poor, the theories remain valid as long as
there is not any relative motion across the filler-matrix interface
(no slip case) [4].

However, as soon as the frictional forces are exceeded and the re-
lative motion of filler and matrix is possible the stresses around the
interface are affected significantly. In this paper we study the condi-
tion that there is no bonding between the filler and matrix. The two
phases are free in movement unless they come into physical contact
as a result of displacement.

The stress-strain at this part depends on the friction between the
filler and matrix at the contacting face. This state is simulated by
allowing a slip condition at this part of the interface. The slip coeffi-
cient indicates the level of friction.
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DEVELOPMENT OF THE PREDICTIVE MODEL

Working Equations of the Model

We start with the governing equations of creeping (Stokes) flow of
incompressible fluids which include the momentum and continuity
equations. By applying a penalty method, using an appropriate pen-
alty equation, the terms for pressure are eliminated. The resultant
equations will be identical to elasticity equations. This has given us
the advantage of using the same code for the simulation of the beha-
viour of the composite materials in both solid and fluid states. A
Galerkin weighted residual method is used to obtain the finite element
formulation of the working equations. Detail of the working equations
are already published elsewhere [5] (Appendix).

Computational Domain Geometry and Boundary Conditions

In the finite element approximation of axisymmetric solids, the con-
tinuous structure or medium is replaced by a system of axisymmetric
elements interconnected at nodal points. It is assumed that the com-
posites filled with particles (assumed to possess symmetry) could be
approximated by a unit cell shown in Figure 1a. When this unit cell is
rotated 360+ around axis OD, a hemisphere embedded in a cylinder is
produced [6].

The boundary conditions imposed for analysing the tensile load
applied on a particulate filled composite are as follows [7]:

FIGURE 1a Axisymmetric unit cell.
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vz ¼ 0 on Z ¼ 0 ð1aÞ

vz ¼ V on Z ¼ b0 ð1bÞ

Here V is a prescribed constant while U is determined from the
condition of vanishing of the average lateral traction rate, i.e.:

srr ¼ 0 on r ¼ R0 ð2Þ

which means that every point along r¼R0 is stress free. Under these
conditions the outer sidewall of the cell does not remain straight and
vertical. However, for the entire specimen under tension the stress
component srr on the outer boundary is zero. The chosen unconstraint
boundary condition is proved to simulate more accurately the proper-
ties of this type of composite. Detail of the comparison of the boundary
conditions in modelling of the properties of particulate composites is
already reported [5]. On the part AB of the interface the filler and
matrix are separated. On the part BC of the interface the filler particle
and the matrix are in contact. A slip boundary condition is applied on
this part of the interface. A more detailed explanation of the state of the
interface is presented in the further sections of this paper.

The finite element mesh used in the analysis is shown in Figure 1b.
The elements are nine-noded biquadratic. The mesh is refined at the
interface region.

FIGURE 1b Mesh.
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Slip Boundary Condition for Fully Debonded Particle

When there is no slip at the interface of the matrix and filler, the re-
lative displacement of the two phases is zero, whereas in the case of
slip the relative displacement of the two phase is not zero and the
boundary condition is described by Naviers slip relation, which is a
third kind (Robin or convective) of boundary condition:

ðbs ? n þ vÞ ? t ¼ 0 ð3Þ

Complementary with the above boundary condition is the following
relation which ensures there is no relative radial displacement of the
two phases.

v ? n ¼ 0 ð4Þ

Where:

b¼ slip coefficient
t¼ stress tensor
n¼unit vector normal to the interface
t¼unit vector tangential to the interface
v¼ relative displacement of the two phases

From the slip boundary equations and the usual stress and dis-
placement relations the components of the slip displacements are ob-
tained as follows [8]:

v1 ¼ �mbn2 2
@v1

@x1
� @v2

@x2

� �
n1n2 þ

@v1

@x2
þ @v2

@x1

� �
n2

2 � n2
1

� �� �
ð5Þ

v2 ¼ mbn1 2
@v1

@x1
� @v2

@x2

� �
n1n2 þ

@v1

@x2
þ @v2

@x1

� �
n2

2 � n2
1

� �� �
ð6Þ

v1 and v2 are the components of displacement in the tangential
and normal direction to the interface. n1 and n2 are the unit vector
components in the tangential and normal direction to the interface.
m and b are shear modulus and slip coefficient, respectively.

We discretise the domain and write the weak formulation of the slip
displacement relations. The interpolation points are chosen inside the
elements adjacent to the slip boundary. The resulting stiffness ma-
trices are assembled with other elemental matrices obtained from the
working equations to form the global stiffness matrix representing the
entire domain.
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The matrix representation of these equations for an element located
at the slip boundary results in the following equation:

ai j
11 ai j

12

ai j
21 ai j

22

" #
v1j

v2j

� �
¼ 0

0

� �
ð7Þ

The members of the above stiffness matrix are given as:

ai j
11 ¼

Z
O

NiNjdOþ 2n1n2
2

Z
O

mbNiNj;1dO

þ ðn2
2 � n2

1Þ
Z
O

mbNiNj;2dO

ai j
12 ¼ �2n1n2

2

Z
O

mbNiNj;2dO

þ ðn2
2 � n2

1Þn2

Z
O

mbNiNj;1dO

ai j
21 ¼ �2n2n2

1

Z
O

mbNiNj;1dO

� ðn2
2 � n2

1Þn1

Z
O

mbNiNj;2dO

ai j
22 ¼

Z
O

NiNjdOþ 2n2n2
1

Z
O

mbNiNj;2dO

� ðn2
2 � n2

1Þ
Z
O

mbNiNj;1dO ð8Þ

Ni and Nj are the weight and shape functions, respectively.

ANALYSIS OF RESULTS

Analysis of the Contact at the Interface of an
Unbonded Filler

In order to investigate the stress transfer at the interface of a de-
bonded filler particle and matrix, we primarily study the state of
displacement of the matrix in the vicinity of a void under tensile
loading. For an unbonded filler in the matrix, as long as the compo-
nents are not brought into contact by a lateral displacement (lateral
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displacement and compressive stress are a result of the Poisson’s
contraction in tensile loading), the state of the stress and displacement
in the matrix will be similar to a voided composite. So the displace-
ment of the matrix at the boundary of the void is used to find the
contact and separation point of the unbonded particle.

An epoxy resin filled with glass beads is chosen as the matrix and
the filler, respectively. The input properties of the phases are reported
in Table 1.

The radial displacement at the boundary of a void in a polymer
matrix is estimated by our model. The results are presented in Figure 2

TABLE 1 Material Properties for the Matrix-Filler

Input properties

Phase E (Gpa) Poisson’s ratio, n

Matrix 3.01 0.35
Glass Sphere 76.0 0.21

FIGURE 2 Displacement of the matrix at the boundary of a void in a porous
composite.
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for different volume fractions. The displacement at the pole of the void
is positive for all volume fractions. Displacement is negative at the
equator up to an angle of about 23 degrees.

Therefore, it is expected, for a composite with an unbonded filler
particle, that the filler and matrix are in contact at the region of the
equator up to about 23 degrees (BC in Figure 1a). They are separated
from this point to the pole of the filler particle (AB in Figure 1a). The
level of the stress transfer at the contacting interface depends on the
friction between the two phases.

If the frictional force acting on the interface is high enough it
can prevent the particle and matrix from having relative tangen-
tial movement. This case is studied elsewhere [9]. If the frictional
force is weak, the tangential displacement occurs and, hence, the
slip boundary condition is imposed for this case. The slip coefficient
controls the extent of relative movement of the matrix and the filler
particle.

The frictional force between the two phases is proportional to the
normal stress acting on the interface. Therefore, in the segment closer
to the pole, it is equal to zero which shows that no stress transfer
occurs. In the other segment which experiences a compressive stress,
the frictional force rises. This frictional force acts in the opposite
direction to the tangential stress and is proportional to the normal
stress, so that:

Ft ¼ mFn ð9Þ

The value of frictional force determines whether there is any re-
lative tangential displacement between filler and matrix or not. The
friction or the freedom of movement of the two phases with respect to
each other can be defined by the slip Equation (3).

In this equation, b, the slip coefficient, indicates the level of the
relative movement. Therefore, the higher the friction coefficient, m, the
lower the slip coefficient, is expected to be and vice versa. The dis-
placement of the matrix at the interface of a fully debonded composite
is presented in Figure 3a. The displacement at the contact point with
the filler is very small compared with the separated part.

The displacement of the matrix for a composite with unbonded
particles remains negative on the slipping part of the interface in the
presence of the filler particle for all volume fractions (Figure 3b) which
is similar to the border of the void. Although at higher volume frac-
tions of 30% it tends to very small values, close to zero, near the
equator of the filler particle. This shows that the filler stays in contact
with the matrix at low volume fractions.
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FIGURE 3a Displacement of matrix and filler at the interface of two phases
in a composite with unbonded filler particle for different volume fractions.

FIGURE 3b Displacement of matrix and filler at the part of the interface
that matrix and filler are in contact in a composite with unbonded filler par-
ticles (different volume fractions).
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The radial stresses at this part are compressive and negative for all
volume fractions up to 20% (Figure 4). This confirms that the matrix and
the filler are in contact at the slipping part. At higher volume fraction,
though, the stresses become positive which can result in losing contact
of the component at this segment of the filler particle at the equator. In a
composite with partially debonded filler or an interfacial crack, any
further crack propagation is stable. This case is analysed separately [9].
However, in the composite with fully unbonded filler, which is the case
we now are looking at, any further physical separation or making con-
tact between the two phases is unstable. Our result here shows that any
further separation can be from the equator. However, any change in the
contact points result in the new state of stick and slip on the boundary
and unstable contact points and stresses. For the voided composite
the radial stresses are almost zero for all the volume fractions, which
indicates a free boundary.

In comparing the results of our model and experimental results
for the completely debonded particle it should be noticed that in
our model we ignore the thermal residual stresses. These stresses
build up as a result of the mismatch of the thermal expansion

FIGURE 4 Radial stress concentration at the interface of the filler and ma-
trix for a composite with fully unbonded filler (different volume fractions).
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coefficients of the two phases. The thermal expansion coefficient of
the polymer is almost ten times that of the glass. The thermal re-
sidual stresses can cause the angle of separation to be smaller than
68+ from the pole.

Stress Distribution at the Interface of Unbonded Filler

The Von Mises stresses at the interface of the voided and unbonded
composite are compared (Figure 5a�b). In an unbonded filler case this
maximum is observed at the end of the contact point (Figure 5a). The
maximum of the Von Mises stress for the voided composite occurs
at the equator. For the fully bonded particle there are two locations
of maxima, one at the pole and the other at about 45 degrees
(Figure 5b).

The radial, tangential and Von Mises stresses at the interface are
calculated for composite with 10% volume fraction of unbonded par-
ticles. All the stresses show a similar trend. However, the maximum
for radial stress is lower than for the tangential and Von Mises

FIGURE 5a Von Mises stress concentration at the interface of the filler and
matrix for a composite with fully unbonded filler (different volume fractions).
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stresses (Figure 6a). At the border of a void in the composite under the
same loading the radial stress is nearly zero, whereas the tangential
and Von Mises reach much higher concentrations with the maximum
at the equator (Figure 6b).

For a partially debonded particle with bonding at part of the in-
terface, the radial stress is much smaller than the other two stresses,
indicating a biaxial state of stress. The interfacial stresses observed in
a composite with perfect bonding between the components are triaxial.
Therefore, the composites with poorer bonding are expected to be
tougher than a composite with perfectly bonded fillers. In the case of
the fully debonded filler, the load transfer from the matrix to filler is
reduced. At the same time, the stresses at the interface are smoother
than partially bonded filler.

The radial stresses at the interface of the filler and matrix are
predicted for different slip coefficients. Different slip coefficients
simulate different friction forces between the contacting surfaces of
the filler and matrix.

FIGURE 5b Von Mises stress concentration at the interface of the filler and
matrix for a composite with perfect bonding and a composite containing voids
(different volume fractions).
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FIGURE 6a Interfacial stress concentrations for a composite with fully un-
bonded filler (volume fraction 10%).

FIGURE 6b Stress concentrations at the border of a void for a porous com-
posite (volume fraction 10%).
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These stresses for the composite with fully unbonded filler for dif-
ferent slip coefficients are compared with that obtained for the partly
debonded filler particles (Figure 7a�b). Two different volume fractions
of 5% and 20% are studied. Only the contacting segments of the in-
terface are considered.

For lower volume fraction (5%) the radial compressive stress
reduces for the slipping interface (Figure 7a). The lower the slip
coefficient, the lower the friction and the compressive stresses will be.
However, the radial stresses at the vicinity of the crack tip show the
opposite trend. These stresses are higher for the partly bonded (no
slip) case compared with the fully debonded filler (with slip).

At the higher volume fraction of 20%, the stresses at the contacting
segment of the interface are very similar in all the cases (Figure 7b).
These stresses are very close to zero. However, at the crack tip region,
a trend similar to a volume fraction 5% can be observed. The stresses
close to the crack tip are higher for the partly bonded (no slip) case
compared with the fully de-bonded filler (with slip).

The Von Mises stress and direct stress distribution of a composite
with fully debonded particles shows that the maximum stresses are

FIGURE 7a Radial stress at the interface of the partly and fully debonded
particle with different slip coefficients at the closed segment of the interface
(volume fraction¼ 5%).
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observed at the point that the components of the composite start to
separate (Figure 8a). In a composite with partially unbonded filler
particles caused by an interfacial crack, the maximum stresses are
found at the crack tip (Figure 8b). The crack tip is at about the
same point as the separation location of matrix and filler for a fully
unbonded particle, although the stress patterns are much smoother
in the fully debonded case. In a composite containing voids the
maximum stresses occur at the void boundary (Figure 8c). The
presence of rigid particles, even with fully unbonded surfaces,
changes the stress distribution in the matrix compared with a porous
composite. This suggests that many of the previous studies that
have made the assumption of similar stress states for these two
cases need to be revised. For a perfectly bonded composite this
maximum is found at the pole of the filler particle (Figure 8d). This
makes these materials more ductile.

Stiffness of a Composite with Unbonded Filler

In order to study the effect of the level of the bonding on the
stiffness of the composite, the estimated modulus of composites

FIGURE 7b Radial stress at the interface of the partly and fully debonded
particle with different slip coefficients at the closed segment of the interface
(volume fraction¼ 20%).
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FIGURE 8a Contour diagram of the direct stress concentrations in the
composite with fully unbonded filler.

FIGURE 8b Contour diagram of the direct stress concentrations in the
composite with partially bonded filler.
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FIGURE 8c Contour diagram of the direct stress concentrations in a porous
composite.

FIGURE 8d Contour diagram of the direct stress concentrations in the
composite with perfectly bonded filler.
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filled with the partially or fully debonded particles and composites
containing voids are compared with composites with perfectly bon-
ded particles (Figure 9). Whilst in the perfectly bonded compo-
site the filler volume fraction increases the stiffness, the trend is
the opposite for the partially bonded or fully debonded particulate
composites.

The fully debonded composite is not efficient in transferring the
load from the matrix to filler. Therefore, it shows lower stiffness
compared with a partially bonded composite that, at least at the
bonded region, transfers the load.

Modulus of composite is a bulk property which depends primarily
on the geometry, modulus, particle size distribution, and concentration
of the filler and has been represented by a large number of theoreti-
cally derived equations. Often one theory gives a better account of one
situation than another. One of the better known and widely used
models is the Kerner-Lewis Equation [10]:

Ec ¼ Em
1 þ A1B1f
1 � B1cf

ð10aÞ

FIGURE 9 Comparison of stiffness of the perfectly bonded, fully and partly
debonded particulate and voided composites.

288 E. Ghassemieh

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
2
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1



The constant A1 is determined by the matrix Poisson0s ratio as
follows:

A1 ¼ 7 � 5n
8 � 10n

ð10bÞ

The other constant, B1, accounts for the relative modulus of the
filler and of the matrix:

B1 ¼ Ef =Em � 1

Ef =Em þ A1
ð10cÞ

with Ef and Em representing the filler and the matrix moduli,
respectively.

The parameter c is a crowding factor described as:

c ¼ 1 þ f
1 � fm

f2
m

 !
ð10dÞ

jm corresponding to the maximum filler volume packing fraction.
Equation (10a) is used to evaluate the modulus of a composite con-
taining perfectly bonded and homogeneous filler particles. The result
of the Kerner-Lewis estimates for the composite modulus is compared
with our finite element model results. The agreement is perfect.

The Kerner-Lewis model for a composite with fully debonded par-
ticles is considered similar to the composite with voids. The equation
for estimation of modulus of the composite then is modified as:

Ec ¼ Em
1 � f

1 � B2jf
ð11Þ

where (B2)¼�1=A1. The modulus values for a fully debonded composite
estimated by the Equation (11) is compared with our finite element
model results in Figure 9. The Kerner-Lewis curve lies between the
curves of fully debonded and voided composites estimated by our finite
element model.

Strength of a Composite with Unbonded Filler

The tensile strength of the composites with perfectly bonded and
unbonded interfaces and composites with voids are calculated using
the finite element model. In order to calculate the composite strength,
it was assumed that the composite would fail as soon as an element
of the matrix reached a large enough value of stress to cause fracture
of the matrix. Since the matrix is subjected to combined stresses
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(triaxial) a suitable failure criterion has to be used in order to predict
matrix failure under combined stresses. The Von Mises failure
criterion or distortion energy theory was selected.

This criterion is then applied by determining which element has the
maximum value of distortion energy for the applied stress. This value
of energy may not exceed the value needed to fail the matrix material
(s2

ys) and, thus, the composite strength is calculated from

Sc ¼ sz
sys

ðUmaxÞ1=2
ð12Þ

where Umax is the maximum value of distortion energy determined for
the arbitrary specified displacement which produces the average stress,
sz, and Sc is the composite strength. The accuracy of the strength re-
sults is particularly affected by the assumption that composite failure
occurs upon the first matrix failure. The finite element analysis predicts
normally lower strength in comparison with the experimental results.

The results are compared in Figure 10a. The decrease of the tensile
strength with increasing volume fraction can be observed in all cases.
The graph shows the strength of composite with unbonded interface is
between the upper bound curve which is for the bonded interface and
the lower bound curve which represents the composites with voids.

FIGURE 10a Strength of the perfectly bonded, fully debonded and voided
composites.
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Different theoretical models are suggested for the unbonded or no
adhesion case. A commonly reported model is due to Nicolais and
Narkis [11] which is based on the assumption that the unbonded
particle cannot carry any of the load and the yielding occurs in the
minimum cross section of the continuous phase. They presented the
following equation for the yield stress of the composite.

sc ¼ smð1 � 1:21V
2=3
f Þ ð13Þ

Another model suggested by Neilsen [12] gives the yield stress in
a composite assuming no adhesion between polymer and filler,
expressed as:

sc ¼ smð1 � V
2=3
f ÞS ð14Þ

where S is the stress concentration function which can be determined
by the finite element analysis.

In Figure 10b the strength predicted by the finite element analysis is
compared with the models proposed by Neilsen and Nicloais and Narkis.

FIGURE 10b Strength of debonded composite predicted by FEM and other
models.
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Neilsen’s prediction is very close to the finite element prediction for
voided composites and it is also closer to the unbonded composite. But
the Nicolais’ and Narkis’s model gives a much higher value for the
strength.

CONCLUSIONS

A finite element model is developed to predict the stiffness, strength
and stress-strain behaviour of filled composites with unbonded parti-
cles. The effect of poor adhesion on stress transfer is evaluated and
compared with perfectly bonded particulate composites. The compu-
tational results are used to predict the further failure progression in
particulate composites. The loci of concentration of stress of debonded
composites are recognised.

The friction between matrix and filler at the contact points is
simulated by imposing the slip condition. The slip coefficient indicates
the level of friction between the components of the composite. In most
of the previous models the case of fully unbonded particles is con-
sidered similar to a composite containing voids. The stress at the inter-
face is considered to be similar to that of a porous composite. Our
analysis clearly shows that, even in the case of fully unbonded filler,
a part of the interface of matrix and filler stay in contact. The load is
transferred at this segment. This changes the distribution of the
stresses at the interface compared with a void. Whereas a porous com-
posite is tougher because of the lack of concentration of stresses, it is
much weaker than a composite with fully unbonded rigid particles.

In a composite with unbonded filler, the initial slipping contact sur-
faces might become separated. This separation starts from the equator.
This leads to a state of slip-stick at the interface with unstable stresses.
In a composite with an interfacial crack the propagation is stable.
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APPENDIX:

Deriving the Working Equations

We start with the governing equations of creeping (Stokes) flow of
incompressible fluids. Using an axisymmetric r-z coordinate system
the momentum equations describing such regimes are given as:

� @P

@z
þ m

1

r

@

@r
r
@vr

@r

� �
þ @2vz

@z2

� �
þ rgz ¼ 0 ð1AÞ

� @P

@r
þ m

@

@r

1

r

@

@r
ðrvrÞ

� �
þ @2vr

@z2

� �
þ rgr ¼ 0 ð2AÞ

The continuity equation is given as:

@vr

@r
þ vr

r
þ @vz

@z
¼ 0 ð3AÞ

where vr; vz are velocity components, P is the pressure, m represents
fluid viscosity, r is fluid density and gr; gz are the components of the
body force vector.

In the continuous penalty method, the incompressibility
condition described by Equation (3A) is treated as a constraint on
the momentum Equations (1A) and (2A). In this approach, the
pressure in the momentum equation is eliminated as an unknown
field variable through the use of a penalty parameter as follows:

P ¼ �l
@vr

@r
þ vr

r
þ @vz

@z

� �
ð4AÞ

where l is a penalty parameter (usually a very large number). The
penalty parameter in our case is defined as:

l ¼ 2nm=ð1 � 2nÞ ð5AÞ

where n is the Poisson ratio. Substitution of the pressure in the
Stokes flow equations using Equation (4A) results in a set of
equations which are identical to the equations of equilibrium of
elastic solids given as:

� @

@r

@vr

@r
þ vr

r
þ @vz

@z

� �
þ @

@r
2m

@vr

@r

� �
þ 2m

r

@vr

@r
� 2mvr

@r2

þ @

@z
m

@vr

@z
þ @vz

@r

� �� �
¼ 0 ð6AÞ
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� @

rz

@vr

@r
þ vr

r
þ @vz

@z

� �
þ @

rz
2m

@vr

@r

� �
þ m

r

@vz

@r
þ @vr

@z

� �

þ @

@z
m

@vr

@z
þ @vz

@r

� �� �
¼ 0 ð7AÞ

The Galerkin weighted residual method is used to derive the weak
formulation of Equations (6A) and (7A). After the application of
Green0s theorem to reduce the order of the differentiation of the second
order terms in these equations, the weak forms in the r and z direc-
tions are obtained as:Z
O

l
NjNi

r2
þ Nj

r

@Ni

@r
þ Ni

r

@Nj

@r
þ @Nj

@r

@Ni

@r

� ��

þ m
2NjNi

r2
þ Nj

@r

@Ni

@r
þ @Nj

@z

@Ni

@z

� ��
Uirdrdz

þ
Z
O

l
@Nj

@r

@Ni

@z
þ 1

r
Nj

@Ni

@z

� �
þ m

@Nj

@z

@Ni

@r

� �� �
Virdrdz

þ
I
G

mNi
@Nj

@z
rnz þ 2mNi

@Nj

@r
rnr � lNi

@Nj

@r
rnr � lNiNjnr

� �
UidG

þ
I
G

mNi
@Nj

@r
rnz � lNi

@Nj

@z
nr

� �
VidT ¼ 0 ðr componentÞ ð8AÞ
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O
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Ni
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þ
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O

l
@Nj

@z

@Ni

@z

� �
þ m 2

@Nj

@z

@Ni

@r
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þ
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mNi
@Nj

@z
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@Nj
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� �
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þ
I
G

2mNi
@Nj

@z
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ðz componentÞ ð9AÞ
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In the above equations m is shear modulus, l is penalty parameter,
nz, nr are components of unit vector normal to the boundary in the
outward direction, Ni and Nj are the weight and shape functions,
respectively.

Equations (8A) and (9A) are the working equations of the present
scheme. In this study we have based our model on the Stokes flow
equations and the penalty method which is identical to the commonly
used equilibrium finite element approach for elasticity analysis. This
gives us the flexibility to switch the model from the analysis of fluid
flow to solid material deformation under applied loads. Since most
composite materials are in a fluid state at the processing time and are
in a solid state when they are used, this approach offers the advantage
of the ability to predict the material behaviour in both cases using the
same computer model.

Analysis of Interfacial Friction and Slip 295

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
9
:
2
5
 
2
2
 
J
a
n
u
a
r
y
 
2
0
1
1


